
Dual Decomposition for Marginal Inference

Justin Domke
Rochester Institute of Technology

Rochester, NY 14623

Abstract

We present a dual decomposition approach to the tree-
reweighted belief propagation objective. Each tree in the
tree-reweighted bound yields one subproblem, which can be
solved with the sum-product algorithm. The master problem
is a simple differentiable optimization, to which a standard
optimization method can be applied. Experimental results on
10x10 Ising models show the dual decomposition approach
using L-BFGS is similar in settings where message-passing
converges quickly, and one to two orders of magnitude faster
in settings where message-passing requires many iterations,
specifically high accuracy convergence, and strong interac-
tions.

Introduction
Marginal inference in probabilistic graphical models is used
in many applications. In the high-treewidth setting, in-
tractability forces the use of approximate algorithms. Loopy
belief propagation(Yedidia, Freeman, and Weiss 2005) of-
ten gives good approximations, but can suffer from local
minima or non-convergence. In one line of work, several al-
gorithms were proposed guaranteeing convergence (to a lo-
cal minima) on the loopy belief propagation objective(Teh
and Welling 2001; Yuille 2002; Heskes, Albers, and Kappen
2003), though often with a tradeoff in speed.
Another line of work developed convex variants(Glober-

son and Jaakkola 2007a; Meshi et al. 2009) that do not
suffer from local optima. Here, we consider the tree-
reweighted (TRW) objective(Wainwright, Jaakkola, and
Willsky 2005a). The original TRW message passing algo-
rithm does not always converge, though appropriate “damp-
ing” of updates appears to accomplish this in practice. Sev-
eral algorithms have been proposed that do provably con-
verge on this or similar objectives(Hazan and Shashua 2009;
Globerson and Jaakkola 2007b; Meltzer, Globerson, and
Weiss 2009). These are not generally claimed to be faster
than TRW when it does converge. A recent exception is the
marginal inference version of the TRW-S algorithm, which
is essentially TRW run with appropriate message update
orders on a graph consisting of monotonic chains(Meltzer,
Globerson, and Weiss 2009).
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A practical limitation of message-passing algorithms is
that even when they do converge, they may do so very
slowly, particularly on models with strong interactions and
when high accuracy is required (Experiments Section).
Dual decomposition is a well-established idea in opti-

mization, whereby an objective function that is a sum of
functions over subsets of variables is “decoupled” into inde-
pendent subproblems by introducing Lagrange multipliers.
These multipliers are then adjusted in the “master” problem
to assure that the solutions of all subproblems agree on com-
mon variables. Dual decomposition has proven useful for
MAP inference (Komodakis, Paragios, and Tziritas 2007;
Wainwright, Jaakkola, and Willsky 2005b; Kolmogorov
2006), where a linear-programming relaxation of a high-
treewidth problem is decoupled into subproblems over trees.
Because the master problem is non-differentiable, care must
be taken in optimization to assure convergence (e.g. using
subgradient methods).
This paper observes that it is relatively straightforward to

apply dual decomposition to the TRW objective. This results
in a simple algorithm where the traditional sum-product al-
gorithm is called on each tree in the TRW bound as subprob-
lems. Unlike for MAP inference, the master problem is dif-
ferentiable, and so standard faster-converging optimization
methods (e.g. quasi-Newton) can be used.
We present experimental results on 10x10 Ising grids,

using L-BFGS to optimize the master problem. Roughly,
our results show that when message passing methods con-
verge quickly (e.g. weak coupling) dual decomposition per-
forms similarly, or slightly slower. However, when message-
passing methods require many iterations (strong coupling,
convergence to high accuracy), dual decomposition is one to
two orders of magnitude faster. We also find that the number
of iterations required by dual decomposition is more con-
centrated than for message passing methods.
A limitation of the proposed method is the need to run

the sum-product algorithm on each constituent tree in each
iteration. Thus, the approach is most attractive when each
factor participates in few trees.

Inference
Undirected models can be seen as members of the exponen-
tial family



p(x; θ) = exp
(
f(x) · θ − A(θ)

)

A(θ) = log
∑

x

exp
(
f(x) · θ

)
,

where the vector of sufficient statistics

f(X = x) = {I(Xα = xα)} ∪ {I(Xi = xi)} (1)

is the set of all indicator functions on all factors α and vari-
ables i. Corresponding to this is a bipartite graph with one
node for each factor and variable, and an edge between α
and i if and only if i ∈ α.
Marginal inference means recovering the expected value

of the sufficient statistics

b =
∑

x

p(x; θ)f(x), (2)

which, when f is as in Eq. 1, is equivalent to finding the
marginal distributions for all factors and variables. The sum
over all possible vectors x in Eq. 2 is impractical when
x is not low-dimensional. The sum-product algorithm pro-
vides a solution in treelike graphs. In general, approxima-
tions are necessary. This motivates the variational character-
ization(Wainwright and Jordan 2008)

A(θ) = max
b∈M

θ · b + H(b), (3)

where the marginal polytope

M = {b : ∃θ,b = Ep(θ)[f(X)]}
is the set of achievable marginals, and H(b) =
−

∑
x p(x) log p(x) is the entropy of the distribution p that

produces the marginals b.
The tree-reweighted (TRW)(Wainwright, Jaakkola, and

Willsky 2005a) bound on A is based on applying two re-
laxations to Eq. 3, both of which are upper bounds. The first
is that H can be upper-bounded by the projection onto a
tree-graph T . DefineHT to be the entropy corresponding to
the tree graph T , and b(T ) to be only those marginals corre-
sponding to T , then we have the tractable bound(Wainwright
and Jordan 2008, Prop. 7.1)

H(b) ≤ HT (b(T )).
Accordingly, given a distribution ρT over a set of trees T ,
we have

H(b) ≤
∑

T

ρT H(b(T )).

Secondly, the marginal polytopeM is difficult to charac-
terize in general, and so is replaced with the local polytope

L = {b : b(T ) ∈ MT ∀T },
whereMT is the marginal polytope for tree T . Since L ⊃
M, and maximizing over a larger set can only increase the
optimum, this also upper bounds A.
Applying both these bounds, we have

A(θ) ≤ B(θ) =max
b∈L

. θ · b +
∑

T

ρT H(b(T )) (4)

We are interested in performing the optimization neces-
sary to compute B(θ), as well as the associated marginals.
It is possible to compute B(θ) using a standard con-

strained optimization approach, such as an interior point
algorithm. Done conventionally, this scales poorly (albeit
polynomially) to large high-treewidth graphs due to the con-
straint that the beliefs lie in the local polytope. One can also
take the dual of Eq. 4, resulting in an unconstrained problem
that can be addressed with methods that scale linearly such
as conjugate gradients or L-BFGS. However, this has not
been proven faster than message-passing methods in prac-
tice(Globerson and Jaakkola 2007b).

Dual Decomposition
The basic idea of dual decomposition is to take an optimiza-
tion problem of the form

max
∑

i

fi(x)

and “decouple” the functions fi by transforming it into the
equivalent constrained problem

maxx

∑

i

fi(xi) s.t. ∀i, j xi = xj

The constraint that the different xi are equal can be en-
forced in various ways. For technical reasons, it is conve-
nient in this paper to enforce that each xi is equal to the
mean of all xj , producing the problem

maxx

∑

i

fi(xi) s.t. xi =
1
N

∑

j

xj .

This has the Lagrangian

L =
∑

i

(
fi(xi) + λi · (xi −

1
N

∑

j

xj)
)
,

and so we can solve the optimization via the minimax prob-
lem

min
{λi}

max
{xi}

L.

Notice that for fixed {λi}, max{xi} L can be achieved by
optimizing over each xi independently. The dual decompo-
sition strategy is most advantageous when this can be done
quickly.

Dual Decomposition of the TRW Objective
This section proves the main result, that the TRW objective
can be addressed using dual decomposition. First, recall the
TRW optimization problem:

B(θ) = max
b∈L

θ · b +
∑

T

ρT HT (b(T )) (5)

Theorem 1. The TRW objective can be written as

B(θ) = min
{θT }

max
{bT ∈MT }

∑

T

(
θT · bT + ρT HT (bT )

)

s.t. ∀a,
∑

T :a∈T

θT
a = θa.



Algorithm 1 Computing the value and gradient of the mas-
ter problemM .
InitializeM to 0.
For all T :
1. Set b̄T ← arg max

bT∈MT

θT · bT + ρT H(bT ) by running
the sum-product algorithm on the graph T with param-
eters θT /ρT .

2. M ← M + θT · bT + ρT HT (bT )

3. dM

dθT ← b̄T

Here, bT and θT denote beliefs and parameters for tree
T . This theorem shows that the TRW problem can be de-
composed into subproblems of the form

ST (θT ) = max
bT∈MT

θT · bT + ρT HT (bT ),

the optimum of which can be found by running the tradi-
tional sum-product algorithm on the graph T with param-
eters θT /ρT . Further, by Danskin’s theorem, dST /dθT =
b̄

T , where b̄T are the maximizing beliefs.
The master problem has the form

min
{θT }

∑

T

S(θT ) s.t. ∀a,
∑

T :a∈T

θT
a = θa. (6)

This is a convex minimization under simple linear con-
straints, and so can be solved by many standard methods.
In particular, notice each constraint in Eq. 6 only affects the
block of variables {θT

a } for a single a, and so does not “over-
lap” on variables with other constraints.

Proof of Theorem 1. First, note that we can write Eq. 5 as

B(θ) = max
{bT ∈MT }

∑

T

(
φT · bT + ρT H(bT )

)

s.t. bT
a =

1
Na

∑

G:a∈G

bG
a ,

where Na = |{G : a ∈ G}|, and the weights φT have been
chosen so that

θa =
∑

T :a∈T

φT
a . (7)

Taking the Lagrangian, we have

B(θ) = min
{λT }

max
{bT ∈MT }

∑

T

(
φT · bT + ρT H(bT )

+
∑

a∈T λT
a (bT

a − 1
Na

∑

G:a∈G

bG
a )

)
. (8)

Now, define θT by

θT
a = φT

a + λT
a − 1

Na

∑

G:a∈G

λG
a .

We can now transfer the condition on φT from Eq. 7 to θT

by observing
∑

T :a∈T

θT
a =

∑

T :a∈T

(
φT

a + λT
a − 1

Na

∑

G:a∈G

λG
a

)

=
∑

T :a∈T

φT
a = θa.

Finally, substituting, θT into Eq. 8 gives the result.

Experiments
These experiments1 compare the proposed dual decomposi-
tion approach to three tree-reweighted message passing al-
gorithms: traditional TRW, TRW with a damping factor of 1

2
in the log domain (Wainwright and Jordan 2008, p. 174), and
the provably convergent variant TRW-S(Meltzer, Globerson,
and Weiss 2009).
All experiments are on what has become the most com-

mon benchmark for high-treewidth inference algorithms,
namely a 10x10 pairwise grid of the form p(x) ∝
exp

(∑
ij θ(xi, xj) +

∑
i θ(xi)

)
, for xi ∈ {−1, 1}. The

“field” parameters are of the form θ(xi) = αF xi where
αF is drawn uniformly from [−1, 1]. The “interaction” pa-
rameters are of the form θ(xi, xj) = αIxixj , where αI

is chosen from different distributions to represent six dif-
ferent settings: mixed potentials of various strengths, αI ∈
[−1, 1], [−3, 3], [−9, 9], and attractive potentials of various
strengths, αI ∈ [0, 1], [0, 3], [0, 9].
Here, the dual decomposition objective from Eq. 6 is op-

timized using the limited-memory BFGS algorithm. We im-
pose the linear equality constraints by reparameterization.
Namely, we optimize over the unconstrained parameters γ T ,
setting θT

a = 1
Na

θa + γT
a − 1

Na

∑
G:a∈G γT

a , which guaran-
tees that

∑
T :a∈T θT

a = θa. Given the derivatives of the mas-
ter problem objectiveM with respect to θT , the derivatives
with respect to γT are also available2.
All results use uniform edge-appearence probabilities of

1
2 . For dual decomposition, two trees are used: One consist-
ing of all horizontal links, the other of all vertical links.
We compare all algorithms in terms of the number of it-

erations necessary to reach various levels of convergence.
One iteration for TRW denotes a full pass over the grid from
top left to bottom right, and then from bottom right to top
left. One iteration for dual decomposition denotes one call
to the Alg. 1, meaning one call to the sum-product algo-
rithm for each tree. To accurately reflect running-times, this
includes calls made during line searches. TRW thus update
each message from a factor to a variable twice in one itera-
tion. TRW-S and dual-decomposition however, update each
message only once due to the fact that messages are updated
along one “direction” and so take roughly half as much time
per iteration (The overhead of L-BFGS itself is small).

1All algorithms were implemented in Python, with C-
extensions for message-passing for efficiency.

2
dM
dγT

a
=

X

G:a∈G

dM
dθG

a

dθG
a

dγT
a

=
dM
dθT

a
− 1

Na

X

G:a∈G

dM
dθG

a



Here, convergence is measured by first performing infer-
ence to a very high degree of accuracy using dual decompo-
sition. Convergence is then measured as |bt − b∗|∞, where
b∗ are the high accuracy marginals, and b t are the predicted
marginals at iteration t. (For dual decomposition, this is de-
fined by averaging over all trees that contain each element.)
It was verified that there is negligible bias introduced by us-
ing dual decomposition to generate b∗ by checking that all
algorithms converge to an accuracy of better than 10−7 if
run for sufficiently many iterations (except when TRW fails
to converge). Dual decomposition was used simply because
it usually converges to high accuracy much faster. Figs. 1
and 2 show scatterplots comparing the number of iterations
necessary for dual decomposition to reach each of three con-
vergence levels with each of the message passing algorithms
over 500 randomly generated problems, while Fig. 3 shows
median statistics.

Discussion

This paper proposes a dual decomposition of the TRW ob-
jective. As a standard optimization algorithm can be effi-
ciently applied to the master problem, this method inherits
the properties of that algorithm, such as guaranteed conver-
gence, and fast convergence rates. Using L-BFGS, dual de-
composition is seen to be one to two orders of magnitude
faster on difficult Ising grids.

The reader may question the need to compute approx-
imate marginals to high accuracy. After all, the approxi-
mation error in a variational method is probably far larger
than 10−6. The need motivating this research was parame-
ter learning. When using approximate inference as part of
a parameter fitting procedure, high accuracy is necessary to
avoid instability. This issue is particularly pronounced if, for
example, computing the loss gradient using finite-difference
perturbation(Domke 2010). Secondly, the number of itera-
tions necessary to reach a given level convergence greatly
depends on the particular problem. Early termination can
be dangerous, since after running a particular number of
message-passing iterations, the actual degree of convergence
is unknown.

A limitation of the proposed algorithm is the requirement
to explicitly process each tree in the TRW bound, rather
than just using edge appearance probabilities, as with mes-
sage passing algorithms. In many cases, this is no problem.
Where each edge participates in only one tree (as is typ-
ical for grids), this represents no overhead. However, this
could be prohibitively expensive if one wanted to make use
of a very complicated tree bound. One natural idea would
be to instead make use of an arbitrary set of trees cov-
ering the original graph, rather than the same trees used
in the TRW bound. This strategy could also allow the
use of other proposed convex entropies(Meshi et al. 2009;
Hazan and Shashua 2009; Heskes 2006). This leads to sub-
problems of the form

ST (θT ) = max
bT∈MT

θT ·bT −
∑

α∈T

∑

xα

cαb(xα) log b(xα)

−
∑

i∈T

∑

xi

cib(xi) log b(xi).

Unfortunately, though these problems can be solved with
message-passing(Meshi et al. 2009, Eqs. 9-10), convergence
does not occur in a single pass of updates like the sum-
product algorithm, even on a tree, meaning a major loss of
efficiency in solving subproblems. To the author’s knowl-
edge, no algorithm is known that converges in a single pass
for this problem.
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Figure 1: Scatterplots comparing the number of iterations necessary to reach three levels of convergence on 500 random prob-
lems with field potentials αF ∈ [−1, 1] and interaction potentials αI of three attractive strengths. With weak interactions
strengths, the message passing algorithms perform comparably to dual decomposition, while with strong interactions, dual de-
composition is faster. The number of iterations required by dual decomposition is more concentrated than for message passing.
A point is plotted at 105 iterations if convergence was not achieved by then. For low interaction levels and low accuracy con-
vergence, message-passing is somewhat faster, though dual decomposition also performs well. At higher interaction levels and
higher levels of convergence dual decomposition is faster.
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Figure 2: The experiment from Fig. 1 with interaction potentials of threemixed strengths. For low interaction levels and low ac-
curacy convergence, message-passing is somewhat faster, though dual decomposition also performs well. At higher interaction
levels and higher levels of convergence dual decomposition is faster.
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Figure 3: Themedian number of iterations required for the dual decomposition andmessage passingmethods in various settings,
along with 99% confidence intervals, shown with horizontal bars. Top: attractive potentials. Bottom: Mixed potentials. Since
TRW does not always converge, it is only shown on a subset of settings. TRW-damped and TRW-S appear to always converge,
but sometimes not within 105 iterations. These are plotted when enough problems converge within 10 5 iterations to estimate
the median and confidence intervals.


